10MV X-ray における miniphantom の外径による

コリメータ散乱係数の変化

中野渡 優志 1)、奈良 鉄造 2)、高木 雅文 2)、真里谷 靖 1),3)

要旨:放射線治療計画での線量計算は複雑化している。小照射野はその中でも重要な対象のひとつである。本研究では、線量計算のパラメータであるコリメータ散乱係数(S_o)に及ぼす照射野サイズと miniphantom (MP)の外径の組み合わせによる影響を検討することを目的とした。直線加速器を用い、X線エネルギー10MV で 400 MU を照射し、線源検出器間距離は 1,000 mm にて一定とした。正方形照射野の辺を 8~100 mm の 11 段階, MP の外径は 10~40 mm の 4 段階とし、各々の組み合わせによる S_oを測定した。結果として、MP の外径より照射野サイズが小さい場合に測定された S_o は減少傾向を示すことが分かった。その原因としては照射野内に MP 全体が含まれるか否か、さらに各々の場合の 2 次電子発生量の違いが重要であることが示唆された。

キーワード:コリメータ散乱係数,小照射野,電子平衡

ORIGINAL ARTICLE

Evaluation of collimator scatter factor measured by using several kinds of miniphantom in 10MV X-ray

Yushi NAKANOWATARI¹⁾, Tetsuzo NARA²⁾, Masafumi TAKAGI²⁾, Yasushi MARIYA^{1), 3)}*

Abstract: Dose calculation has become complicated in the field of radiation treatment planning. Narrow radiation field is very important in this field. The aim of this study was to investigate the influence of combination of the size of radiation field and the external diameter of miniphantom (MP) on the value of collimator scatter factor (S_c), using 10MV X-ray delivered by linear accelerator. The source-chamber distance was fixed to be 1,000 mm. The center of MP was located in correspondence with the axis of the radiation beam. Irradiation of 400 MU was delivered with the dose rate of 400 MU/min. We measured S_c by using a combination of the 4 sizes of MPs with external diameters ranging from 10 mm to 40 mm and 11 sizes of square radiation fields ranging from $8 \times 8 \text{ mm}^2$ to $100 \times 100 \text{ mm}^2$. Consequently, the measured values of S_c were lower when the size of the radiation field was smaller than the external diameter of MP. Whether the whole volume of MP was included within the radiation field or not appeared critical for our results, and it was suggested that the differed amount of secondary electron might play a crucial role for it.

Key words: Collimator scatter factor; Narrow radiation field; Electron equilibrium

¹⁾ Hirosaki University Graduate school of	1) 弘前大学大学院保健学研究科
Health Sciences	2) 弘前中央病院放射線科
²⁾ Department of Radiology, Hirosaki Central	³⁾ むつ総合病院放射線科
Honspital	*責任著者:真里谷靖
³⁾ Department of Radiology/Radiation	(y_mariya@hospital-mutsu.or.jp)
Oncology, Mutsu General Hospital	〒035-8601 青森県むつ市小川町一丁目 2 番 8 号
*Corresponding Author: Yasushi Mariya	TEL: 0175-22-2111 FAX: 0175-22-4439
1-2-8 Kogawa-machi, Mutsu, Aomori 035-8601,	平成 28 年 8 月 5 日受付
Japan (y_mariya@hospital-mutsu.or.jp)	平成 28 年 10 月 5 日受理
Received for publication, August 5, 2016	
Accepted for publication, October 5, 2016	

はじめに

近年、外部放射線治療は通院で実施可能ながん 治療法として広く受け入れられるようになったが、 実際に患者に照射を行うまでの業務プロセスは複 雑かつ時間を要するものであり、事前に電離箱線 量計や固体水等価ファントムなどを用いて実測す ることで投与線量精度を担保するという重要な過 程が必要な高精度の治療技術も多く存在する。そ のひとつとして、脳腫瘍などに対する定位放射線 治療が国内の治療施設で広く用いられている。し かし、定位放射線治療は小照射野を含む照射技術 を必要とし、通常用いられる照射野に比較して吸 収線量の精度はより高いレベルのものが要求され る。これに関して、線量計算に関する多くの業績 で知られる Khan ら¹⁾は tissue maximum ratio

(TMR), phantom scatter factor (S_p) および scatter maximum ratio (SMR) といった様々 なパラメータを用いてX線の1次成分と散乱成分 とを分離して計算する手法を提案した。しかしこ の手法では, コリメータを全閉するゼロ照射野で のTMR や S_p が想定されている。ゼロ照射野やこ れに近似する小照射野に対する知見はこれまで検 討が加えられてはいるものの²,現状ではなお不 明瞭な点が多い。

通常小照射野は通常 30 × 30 mm² 以下の照射 野サイズと定義され, stereotactic irradiation

(STI)やintensity modulated radiation therapy (IMRT)を行う上でその使用が必要となる。小 照射野では、線量計算において jaw collimator 開 度に依存した出力変動を認めるが,変動を補正す る係数としてコリメータ散乱係数(S_c)がある。 S_cの算出においては,その測定にあたりアクリル 製円柱状miniphantom (MP)を用いた手法が Gastren ら³⁾によって提案され,MPを用いた照 射野サイズの変化に伴うS_cの変化について報告が なされている^{4),5),6)}。しかし、現時点でもなお十 分に確立されてはいない小照射野を実際に使用す る場合,線量計算の精度を担保するためにはS_cを はじめとするパラメータを精度よく適用すること が重要であり、誤ったパラメータを適用すること は精度が十分に担保されない線量を患者に投与す ることにつながる可能性がある。そこで今回、複 数の異なる外径を持つ MP を用いた測定により, 小照射野を中心とした照射野サイズの変化とS_cの 変化の関連について検討した。また同じ外径を持 つ MP について,検出器の電離容積の異なる2つ の指頭型電離箱線量計を用い同様の照射野設定で S_c測定を行った場合に,電離容積の違いがS_cに及 ぼす影響についても検討を加え、これらの結果を 報告した。

方法

直線加速器は CLINAC-iX (Varian, USA) で,10 MV X線を用いた。検出器は2種類の指頭 型電離箱線量計,電位計は Ramtec smart

(TOYO MEDIC)を用いた。照射条件は、線量
 率 400 MU/min にて 400 MUの照射とした。

照射野サイズは,線源検出器間距離

(source-chamber distance: SCD)が 1,000
mm となる X線ビームに平行な平面上で決定されるが、今回の実験で使用した照射野サイズはこの
平面上で最小8×8 mm²から最大 100×100 mm²
までの小照射野を含む照射野サイズとした。その
際の正方形照射野の辺は8、10、15、20、25、30、40、50、60、80 および 100
mm の11段階とした。ある照射野サイズ (X)における指頭型電離箱線量計から得られる測定値を
M(x)、照射野サイズ 100×100 mm²における測定
値を M(100) と定義すると、ある照射野サイズにおけるコリメータ散乱係数 S_c (20) は次式 1)により得られ¹)、各照射野サイズについてこれを適用した。

なお使用した指頭型電離箱線量計の測定精度お よび照射装置の出力精度に関しては、日々の装置 点検の段階で測定誤差が1%を下回っており、日 常診療の許容範囲内であることが確認されている。

(1) MPの外径の変化に伴うS.の変化

測定時の機器配置概略を Fig.1 に示す。検出器 は 0.016 cm³ 指頭型電離箱線量計 (PTW 社製 TN31016, Germany)を用いた。アクリル製 MP に挿入した検出器をX線ビームに対して平行に配 置後,測定深を MP 先端から 100 mm としてS_cの 測定を行った。照射野サイズは前述の11段階とし た。測定に用いた MP の外径は 10 mm, 20 mm, 30 mm, 40 mm の 4 種類であり, 11段階の正方形 照射野, 4 段階の MP の外径各々の組み合わせに よる S₆の変化を解析した。

Fig.1 Scheme of measurement of S_c values using miniphantom.

Ionization chamber inserted vertically to the center of miniphantom (MP) located in correspondence with the axis of radiation beam. The source-chamber distance was fixed to be 1000 mm and the depth in MP was fixed to be 100 mm.

Table 1 Measured values of S_c according to the combination of radiation field of 11 sizes and miniphantom of 4 sizes.

Side of	External diameter of miniphantoms [mm]				
radiation field: [mm]	10	20	30	40	
8	0.804 *	0.583 *	0.597 *	0.530*	
10	0.885*	0.697 *	0.692 *	0.637*	
15	0.918	0.860 *	0.820*	0.782*	
20	0.925	0.923 *	0.886*	0.855 *	
25	0.929	0.936	0.921 *	0.893 *	
30	0.934	0.941	0.940 *	0.921 *	
40	0.946	0.950	0.954	0.954 *	
50	0.956	0.962	0.964	0.964	
60	0.971	0.973	0.974	0.975	
80	0.987	0.990	0.990	0.989	
100	1.000	1.000	1.000	1.000	

*Miniphantom was not wholly irradiated.

Fig.2 Measured values of S_c according to the combination of radiation field of 11 sizes and miniphantom of 4 sizes.

As radiation field became smaller, S_c value became lower in the range of narrow radiation field. In addition, S_c value tended to become lower when external diameter of miniphantom was smaller.

(2) 指頭型電離箱線量計の電離容積の違いによる S_cの変化

指頭型電離箱線量計の電離容積の違いが測定結 果に及ぼす影響を検証するために,外径30mmの MPを用いて電離容積の異なる2種類の指頭型電 離箱線量計を挿入して測定を行った。検出器は 0.016 cm³ 指頭型電離箱線量計および 0.6 cm³ 指 頭型電離箱線量計(PTW 社製 TN30013)を用 いた。測定中心における両指頭型電離箱線量計の 外径は, 0.6 cm³ 指頭型電離箱線量計では 7.3 mm, 0.016 cm³ 指頭型電離箱線量計では 4.3 mmと異なっていたため,側壁厚が異なるそれぞ れの形状に合致した MPを選択した。測定時の機 器配置は Fig. 1 と同様であり,照射野サイズは前 述の11段階とした。

結果

MPの外径の変化に伴うS_cの変化

0.016 cm³ 指頭型電離箱線量計を用いて測定し た照射野サイズ変化に伴う MP の外径ごとのS_cの 変化、および奈良らのの方法により求められる小 照射野におけるScの実測データを示す(Table.1, Fig. 2)。照射野サイズ 40 × 40 mm² 以上の条 件では、いずれの MP の外径におけるS_cであって も良好な一致を示した。照射野サイズ 40 × 40 mm² 未満の条件では、いずれの MP の外径にお けるS_cであっても減少する傾向を示した。また S_cの減少は MP の外径によってそれぞれ異なる 傾向を示した。即ち、 MP の外径より狭い照射野 の辺を設定した際には、 MP の外径より広い照射 野を設定した際のS_cと比較し、明らかに減少傾向 の増大を示した。さらに MP の外径が縮小するに つれ、 MP の外径より狭い照射野の辺を設定した 際のS_cの減少は、より急峻なものとなった。

(2) 指頭型電離箱線量計の電離容積の違いによるS_cの変化

指頭型電離箱線量計の電離容積の違いによる*S*。 の変化を検討した(Table.2, Fig.3)。何れの 照射条件においても 0.016 cm³ 指頭型電離箱線量 計および 0.6 cm³ 指頭型電離箱線量計を用いて測 定した*S*。は同様の傾向を示した。しかし,照射野 の辺が15 mm以下では両者の測定結果に差異が目 立ち, 0.016 cm³ 指頭型電離箱線量計を用いて測 定された*S*。が大きくなる傾向を示した。この傾向 は 8 mm で最大となった。 Table 2 Measured values of S_c according to a combination of radiation field of 11 sizes and ionization chamber of 2 types.

The size of external diameter of miniphantom was fixed to be 30 mm.

*Miniphantom was not wholly irradiated.

Side of	Chamber (vented sensitive volume)			
radiation fields [mm]	TN30016 (0.6 cc)	TN31013 (0.016 cc)		
8	0.439 *	0.597 *		
10	0.588 *	0.692 *		
15	0.784 *	0.820 *		
20	0.872 *	0.886 *		
25	0.917 *	0.921 *		
30	0.939 *	0.940 *		
40	0.953	0.954		
50	0.963	0.964		
60	0.972	0.975		
80	0.989	0.990		
100	1.000	1.000		

Fig.3 Measured values of S_c according to the combination of radiation field of 11 sizes and ionization chamber of 2 types.

As radiation field became smaller, S_c value became lower in the range of the narrow radiation field. The size of external diameter of miniphantom was fixed to be 30 mm.

考察

今回の結果で注目すべき点は, MP の外径以下

の照射野サイズで測定を行う場合にS。が予想以上に減少を示したことであった。これについては中

川らⁿも同様の結果を報告しているが,その原因 については以下のようなものを挙げることが出来 る。一つは、2次電子の存在である。 Khan らは S。測定において, MPを用いる測定を行う際には, 測定値が相対的光子フルエンスを全て反映するな らば,照射野に MP が十分に含まれていることが 前提であるとしている。言い換えると, MP が均 一に照射されることが重要となる。このためには, 指頭型電離箱線量計に装着するビルドアップキャ ップや MP を小型にしたS。の測定が有効である。 また彼らはSCDを1,000 mmより長く設定すること により, コリメータ開度はそのままで,検出器に 対して照射野サイズを十分に広くとることが可能 な拡大照射法も有効であるとしている。

奈良ら⁶は最小照射野サイズ10×10 mm²から40 ×40 mm²に至る小照射野におけるScを,アルミ製 ビルドアップキャップ(外径 27.3 mm, 厚さ 2.88 g/cm²)の装着とSCD=3,000 mmとする拡大 照射法を併用した実測により測定した。50×50 mm²から100×100mm²の照射野サイズに関して はアクリル製ミニファントム (MP 径 40 mm, 長 さ 100 mm, depth 50 mm), SCD = 1,000 mm の条 件で測定し報告している。彼らによるSc測定の報 告の中で MP を用いた測定時のみわずかに MP が 照射野外にはみ出す例が数例あったが、その他の 設定照射野においてはアクリル製ビルドアップキ ャップおよび MP は全て照射野内に含まれていた。 これは Khan らによるSc測定時の理想条件をおお むね満たすものであり、適切なSc測定がなされた と考えられる。 Fig.2 にみるように今回われわれ の複数の MP 外径サイズを用いた結果と比較する と, MP 外径 10 mm 時の測定結果が奈良らの報告 した結果に最も近く,同じ MP 外径における今回 の測定結果とは10×10mm²の照射野サイズにおい て6.2%という差異が最大であった。この差異は照 射野の拡大につれて減少した。われわれの結果に おける MP 外径 10 mm 時の測定結果は、 Khan ら が示したSc測定の理想条件を満たして測定された 結果に近似していたことから,照射野内に MP を 含むことの重要性が改めて確認できたものと考え る。照射野サイズの縮小に伴い MP の一部が照射

野外にはみ出す場合には、MPとX線との相互作 用により生じる2次電子の相対的な発生量減少が 相対線量を表すS_oの減少に寄与することが推測さ れた。今後、充分な測定回数およびさらに詳細に 照射野を設定することで、検討を続けていきたい。

一方、直線加速器を用いた測定において照射へ ッド由来の混入電子の影響を無視することはでき ない。ビルドアップキャップや MP を用いる利点 の一つにヘッド由来の混入電子の除去が挙げられ る。それは 10MV X 線を用いた場合の線量最大深 (dmax)における混入電子による線量寄与は、 JursinicとMackie⁸⁾の報告によると5%にのぼり, 無視できない値となることからもその重要性が示 唆される。そこで MP を用いて混入電子の除去を 期待する場合, MP 外径を十分に厚くすることが 必要とされるが、前述のとおり MP 外径を厚くす ることは小照射野における測定の妨げとなる。し かしながら混入電子の発生量は jaw collimator 開度 の縮小に伴い減少することが明らかである。よっ て小照射野における測定値に対しては混入電子の 影響は比較的小さいと推定されるが、その詳細は 不明でありさらなる検討を要する。今後は、小照 射野における最適な MP 外径の選択を含む詳細な S。の検討のため、モンテカルロシミュレーション を用いて2次電子や混入電子の影響を検討するな ど、理論面からの詳細なアプローチも重要になる と考える。

まとめ

MPを用いた Sa 測定では, MPをすべて含む照 射野サイズで測定を行うことの必要性を確認する 結果となった。 MP 外径の縮小に伴う 2 次電子や 混入電子の影響について, さらに詳細な検討を行 うことを考えている。

文献

 Khan FM, Sewchand W, Lee J, et al.: Revision of tissue-maximum ratio and scatter-maximum ratio concepts for cobalt 60 and higher energy x-ray beams. Med Phys, 7(3): 230-237, 1980.
 大谷浩樹,斉藤秀敏,入船寅二:定位放射線 照射における小照射野線量評価の散乱補正係数. J Jpn Health Sci , 8(2) : 105-110 , 2005 . 3) J J M van Gasteren, S Heukeloma, H J van Kleffens, et al: The determination of phantom and collimator scatter components of the output of megavoltage photon beams: measurement of the collimator scatter part with a beam-coaxial narrow cylindrical phantom. Radiotherapy and Oncology, 20: 250-257, 1991.

4) X Allen Li, M Soubra, J Szanto, L H Gerig: Lateral electron equilibrium and electron contamination in measurements of head-scatter factors using miniphantoms and brass caps. Med Phys, 22(7):1167-1170, 1995.

 5) 佐藤智春,石田寿城,萬篤憲,他:ミニファントムおよびビルドアップキャップによるヘッド 散乱係数の評価. J Jpn Soc Ther Radial Oncol, 15: 263-269, 2003.

6) 奈良鉄造,岩崎晃,他:コリメータ散乱係数
 (S)およびファントム散乱係数(Sp)を用いた

10MVX線不整形照射野線量評価法. 日放技学誌, 60:87-100, 2004.

7) 中川政幸,中田学,岡田孝,他:ミニファン
 トムを用いたヘッド散乱係数の測定法の評価.日
 放技学誌,54:1155-1161,2000.

8) Jursnic PA, Mackie TR: Characteristics of secondary electrons produced by 6, 10 and 24 MV x-ray beams. Phys Med Biol, 41: 1499-1509, 1996